
8 The Delphi Magazine Issue 39

Base64 MIME Encoding
by Damon Matthews

Although email is a good means
of communicating with people

all over the world, it does suffer
from one distinct disadvantage. It
is purely text based and cannot
transfer binary data unaided. This
disadvantage, together with the
obvious need to transfer binary
data, led to the creation of MIME,
or Multipurpose Internet Mail
Extensions.

MIME is a method of allowing the
attachment of binary data to a stan-
dard email by first converting that
data into a textual format, which
can then be restored to its original
format upon receipt.

MIME Data Types
According to the MIME RFC
(Request For Comment), there are
seven basic types of data that can
be transferred using this method.
These are: text, multipart (for
those containing multiple pieces of
independent data), message (the
message body is itself a full email
message including all headers and
any MIME attachments), image,
audio, video and application.

Any form of data can usually be
placed in one of these categories as
a subtype. For instance, a JPEG
image is of type image/jpeg and a
wav file is of type audio/wav.
Anything that cannot be easily
placed in any of these types is
given a type beginning with an x.

All standard types (that is, those
not beginning with an x) are agreed
standards which form part of the
MIME standard. So if you were to
invent a new image type and
wanted it to be MIME encoded it
would come under x until such
time as it was integrated into the
standard MIME subtypes. So, for
instance, you could call it
image/x-myimage (rather than
image/myimage).

MIME is fairly extensive, being
contained in a multi part RFC. The
first part of this is RFC 1521, which
covers the basic outline of MIME
and the techniques used to

convert binary data into a textual
format and back again. This RFC is
nearly 70 pages in length and could
be considered heavy reading. It’s
really only necessary for those
needing to fully implement MIME
(or maybe those with an interest in
internet protocols and/or nothing
better to read!). There are also
additional RFCs covering special-
ised forms of MIME encoding such
as that used with EDI (Electronic
Data Interchange).

What I am going to cover here is
one of the methods for carrying out
the actual encoding and decoding
of binary data for attachment to an
email: Base64.

There are four main methods of
carrying out encoding and decod-
ing. These are: Quoted Printable,
UU-Coding, XX-Coding and Base64
Coding. Of these, Base64 is proba-
bly the best, as the others have
some disadvantages. Quoted Print-
able is limited and is not ideal for
transferring a binary file: it is more
suited to converting the occasional
non-standard character that
cannot be sent via email (such as
accented characters or special
characters like the English pound
sign).

UU and XX encoding are better,
allowing the transfer of binary files,
but have the disadvantage of not
using a universally standard set of
translation characters. If either of
these pass through a system using,
for instance, EBCDIC, there is a
chance they can be altered and
therefore corrupted (this may only
be a small chance, but it might
happen, as outlined in the MIME
RFC). Base64 has the advantage of
being identically represented in
ASCII and all forms of EBCDIC.

Base64
Base64 works in the following way.
A binary input stream is taken 3
binary characters at a time, giving
24 bits of information. This is con-
verted into 4 groups of 6 bits,
which are used as an index into an

array of 64 characters (the Base64
alphabet). So, for each 3 binary
characters read in, 4 ASCII
(Base64) characters are produced.
The output stream is then cut at
every 76 output characters (ie has
a line length of 76). This means that
each line of a Base64 encoded file
represents 76/4*3 or 57 binary
characters.

Now, the number of characters
in the finally encoded file must be
exactly divisible by 4. This means
that the number of binary charac-
ters in the input file would need to
be divisible by 3. Of course it is
unrealistic to expect this. So, there
are three possible cases that can
occur at the end of a file. There will
be 1, 2 or 3 characters. If there are 3
characters, then all is fine. If there
are 1 or 2, then the encoded output
must be padded to make a total of 4
characters.

The padding is done like this. If
there are 2 characters left, these
two characters are used to create 3
Base64 characters and a single =
character is added onto the end. If
there is 1 character left, the single
character is used to create 2 Base
64 characters and 2 = characters
are added on the end.

Base64 uses the following
character set: the upper case
alphabetic characters, the lower
case alphabetic characters, the
numbers 0 to 9 and the characters
+ and /. The padding character = is
used in addition and is not counted
as one of the 64 characters in the
Base64 alphabet (and can there-
fore appear only at the end of the
encoded file: if it occurs at any
other place in the encoded file then
something is wrong).

Implementation
So how would one go about imple-
menting MIME encoding and
decoding in Delphi? There are a
couple of options available. You
could of course look for a compo-
nent to do it, and there are a few
available. Secondly, if you have

10 The Delphi Magazine Issue 39

Delphi 4 Professional there is a rel-
evant component. The third option
is of course to write it yourself.

So, to do the job ourselves, we
need functions to encode and
decode a file. The first thing is to
declare the Base64 Alphabet (or
character set if you prefer). It can
easily be declared as a TString and
populated as follows:

Base64Alphabet :=
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’+
‘Abcdefghijklmnopqrstuvwxyz’+
‘0123456789+/’;

To encode a file, first we open the
file (using a TFileStream), then

create an array of 76 bytes to hold
the converted characters. Next we
read in 3 (binary) characters. If we
succeeded in getting 3 characters,
carry out the conversion and add
them to the array. If we only got 2
characters, convert these into 3
characters, add a single = and add
them to the array. If we only got 1
character, convert this into 2 char-
acters, add two = characters and
add them to the array. Then, if the
array holds 76 characters, add it to
a TStringList (which is ideal for
holding the converted file). If we’re
not at the end of the file, we then
attempt to read another 3 charac-
ters. Listing 1 shows the code.

To decode a file, first we read the
file into a TStringList. Then we

open a TFileStream (to write the
converted MIME file out to). Next
we read a line from the
TStringList. If the line is 76 charac-
ters long, we read 4 characters and
convert them into 3 binary charac-
ters, then write these out to the
TFileStream. If we’ve not yet
converted all 76 characters we
read another 4 characters. If the
line is not 76 characters long, we
read 4 characters and convert
them into 3 binary characters,
then write these out to the
TFileStream, continuing until you
reach the final 4 characters. Then,
with the final 4 characters: if there
is one = at the end take the other 3

function TForm1.decode: boolean;
var
stringToDecode: String;
setof4ASCII: Array[1..4] of char;
setof57: Array[1..57] of char;
maincounter, counter: Integer;
ord1,ord2,ord3, ord4: Integer;
use3rd, use4th: boolean;
outf: TFileStream;
total: Integer;
loops: Integer;

begin
encodedfile.LoadFromFile(infilename);
outf := TFileStream.Create(outfilename,fmCreate);
for maincounter := 0 to encodedfile.count - 1 do begin
// beginning of main loop
stringToDecode := encodedfile.Strings[maincounter];
total := 0;
loops := strlen(PChar(stringToDecode)) div 4;
for counter := 0 to loops-1 do begin
use3rd := true;
use4th := true;
setof4ASCII[1] := stringTodecode[counter*4 +1];
setof4ASCII[2] := stringTodecode[counter*4 +2];
setof4ASCII[3] := stringTodecode[counter*4 +3];
setof4ASCII[4] := stringTodecode[counter*4 +4];
ord1 := pos(setof4ASCII[1],base64Alphabet)-1;
ord2 := pos(setof4ASCII[2],base64Alphabet)-1;
if(setof4ASCII[3] = '=') then begin

ord3 := 0;
use3rd := false;

end else
ord3 := pos(setof4ASCII[3],base64Alphabet)-1;

if(setof4ASCII[4] = '=') then begin
ord4 := 0;
use4th := false;

end else
ord4 := pos(setof4ASCII[4],base64Alphabet)-1;

setof57[counter*3+1] := chr(ord1*4+(ord2 div 16));
if use3rd then begin
setof57[counter*3+2] :=
chr((ord2 mod 16)*16 + (ord3 div 4));

inc(total);
end;
if use4th then begin
setof57[counter*3+3] := chr((ord3 mod 4)*64 +ord4);
inc(total);

end;
inc(total);

end;
if total > 0 then
for counter:=1 to total do
outf.Write(setof57[counter],1);

end; // end of main loop
outf.Free;
Result:=true;

end;

➤ Listing 2

function TForm1.encode: boolean;
var
encodedString: String;
setof3ASCII: Array[1..3] of byte;
counter: Integer;
ord1,ord2,ord3: Integer;
file2enc: TFileStream;
read57: Array[1..57] of byte;
strlength: LongInt;
loops: Integer;

begin
file2enc := TFileStream.Create(infilename,fmOpenRead);
encodedfile := TStringList.Create;
strlength := file2enc.Read(read57,57);
while strlength > 0 do begin
// beginning of main loop
encodedString := '';
loops := strlength div 3;
for counter := 0 to loops -1 do begin
setof3ASCII[1] := read57[counter*3 +1];
setof3ASCII[2] := read57[counter*3 +2];
setof3ASCII[3] := read57[counter*3 +3];
ord1 := ord(setof3ASCII[1]);
ord2 := ord(setof3ASCII[2]);
ord3 := ord(setof3ASCII[3]);
encodedString := encodedString +
base64Alphabet[(ord1 div 4)+1];

encodedString := encodedString +
base64Alphabet[(ord1 mod 4)*16 + (ord2 div 16)+1];

encodedString := encodedString +
base64Alphabet[(ord2 mod 16)*4 +(ord3 div 64)+1];

encodedString := encodedString +
base64Alphabet[ord3 mod 64+1];

end;
// two characters left over at end
if(strlength mod 3 = 2) then begin
setof3ASCII[1] := read57[strlength-1];
setof3ASCII[2] := read57[strlength];
ord1 := ord(setof3ASCII[1]);
ord2 := ord(setof3ASCII[2]);
EncodedString := encodedString +
base64Alphabet[(ord1 div 4)+1];

EncodedString := encodedString +
base64Alphabet[(ord1 mod 4)*16 +(ord2 div 16)+1];

EncodedString := encodedString +
base64Alphabet[(ord2 mod 16)*4 +1];

EncodedString := encodedString + '=';
end;
// one character left over at end
if(strlength mod 3 = 1) then begin
setof3ASCII[1] := read57[strlength];
ord1 := ord(setof3ASCII[1]);
EncodedString := encodedString +
base64Alphabet[(ord1 div 4)+1];

EncodedString := encodedString +
base64Alphabet[(ord1 mod 4)*16 +1];

EncodedString := encodedString + '=';
EncodedString := encodedString+'=';

end;
encodedfile.Add(encodedString);
strlength := file2enc.Read(read57,57);

end; // end of main loop
encodedfile.SaveToFile(outfilename);
file2enc.Free;
Result := true;

end;

➤ Listing 1

12 The Delphi Magazine Issue 39

characters and convert them into 2
binary characters, if there are two
= characters take the two MIME
characters and convert them into 1
binary character (note this should
only occur on the final line of the
TStringList: if it doesn’t, some-
thing is wrong with the encoded
file). We continue reading and pro-
cessing lines until the whole
TStringList is dealt with. Listing 2
shows the code.

Most of this, as can be seen from
the listings, is relatively simple.
The only somewhat complicated
part is the actual conversion from
three 8-bit characters to four 6-bit
characters and four 6-bit charac-
ters to three 8-bit characters (and
of course the conversion when
there are a fewer number of 8-bit or
6-bit characters).

There are various techniques
that can be used for this: the one I
have chosen is to perform a calcu-
lation on the values of the charac-
ters (using the ord function) and
using this as an index into the array
holding the Base64 alphabet. The
actual calculations can be seen in

Listings 1 and 2. If you look at the
source for other MIME encoding
components, you will see this and
other methods used to carry out
the conversion.

There is of course much more to
MIME than this. I’ve just covered
Base64 encoding. To fully imple-
ment MIME, you would need to be
able to handle the other forms of
encoding, as well as the various
wrappers placed around the
encoded files. This includes the
MIME headers, separators and the
name of encoded file. Looking at
the headers of any email with an
attachment will show these, and
they are all fully covered in RFC
1521. If you wish to read the RFC, it
can be found at http://sunsite.
doc.ic.ac.uk/rfc /Rfc1521.txt or if
you prefer a postscript file http://
src.doc.ic.ac.uk/rfc/Rfc1521.ps

Damon Matthews works at the UK
Inprise/Borland User Group and
can be reached by email as
damon@richplum.co.uk

	MIME Data Types
	Base64
	Implementation

